
Effective Littlestone Dimension

Valentino Delle Rose12, Alexander Kozachinskiy2, Tomasz Steifer234

1Department of Computer, Control and Management Engineering “Antonio
Ruberti”, Sapienza University of Rome

2Centro Nacional de Inteligencia Artificial, Santiago, Chile
3Instituto de Ingenieŕıa Matemática y Computacional, Universidad Católica de Chile

4Institute of Fundamental Technological Research, Polish Academy of Sciences

Abstract

Delle Rose et al. (COLT’23) introduced an effective version of the Vapnik-Chervonenkis
dimension, and showed that it characterizes improper PAC learning with total computable
learners. In this paper, we introduce and study a similar effectivization of the notion of Little-
stone dimension. Finite effective Littlestone dimension is a necessary condition for computable
online learning but is not a sufficient one—which we already establish for classes of the effective
Littlestone dimension 2. However, the effective Littlestone dimension equals the optimal mis-
take bound for computable learners in two special cases: a) for classes of Littlestone dimension
1 and b) when the learner receives as additional information an upper bound on the numbers
to be guessed. Interestingly, finite effective Littlestone dimension also guarantees that the class
consists only of computable functions.

1 Introduction

Two fundamental models of machine learning, PAC learning and online learning, have been
recently revisited from the viewpoint of computability theory [1, 11, 4, 6]. In the classical setting, a
learning algorithm is understood as a function, getting a sample S and an input x and outputting
its prediction of the value on x. Although this is called an “algorithm”, it is not assumed to have a
Turing machine that computes it. The existence of a learning algorithm for a hypothesis class can
be characterized by a combinatorial dimension of that class, namely, the VC dimension in the case
of PAC learning and the Littlestone dimension in the case of online learning.

What if we do require a learning algorithm to be computable by a Turing machine? We obtain
“computable counterparts” of PAC and online learning models that might no longer be characterized
just by a combinatorial dimension. For instance, Strekenburg [11] constructs a class with finite VC
dimension, given by a decidable set of functions with finite support, that has no computable PAC
learner, even if the learner is allowed to be improper (output functions outside the class). Likewise,
Hasrati and Ben-David [6] observe that there is a class that has Littlestone dimension 1 and consists
of finitely supported functions but does not have an online learner, computable by a partial Turing
machine (the machine must be defined on realizable samples but otherwise it might not halt) with
finite number of mistakes.

Delle Rose at al. [4] recently characterized computable PAC learning via an effectivization of the
notion of the VC dimension. The usual VC dimension of a class H is defined as the maximal size of

1



a subset of the domain where functions from H can realize all dichotomies. The “dual” defintion is
the minimal d such that for any subset of size d + 1 there exists a dichotomy, not realizable by H.
In the effective version of VC dimension, there must be a Turing machine that, given an (d+1)-size
subset, outputs a dichotomy, not realizable by H. The minimal d for which such a Turing machine
exists is called the effective VC dimension of H. As Delle Rose et al. [4] show, classes admitting a
computable PAC learner are exactly classes having finite effective VC dimension. They asume that
the learner can be improper but has to be computed by a total Turing machine, that is, it must halt
even on non-realizable inputs.

In this paper, we introduce a similar “effectivization” of the Littlestone dimension and study its
relationship with the computable online learning. The usual Littlestone dimension of a hypothesis
class H is defined as the maximal d for which there exists a depth-d Littlestone tree with every
branch realizable by H. Following the idea of [4], we define the effective Littlestone dimension of
H as the minimal d for which there exists a Turing machine that, given a Littlestone tree of depth
d+ 1, indicates a branch, not realizable by H.

Our contribution with respect to the effective Littlestone dimension consists of the following.

� In a similar manner, we define the notion of the effective threshold dimension and observe
that classes with finite effective Littlestone dimension coincide with classes of finite effective
threshold dimension.

� We observe that a class that admits an online learner, computable by a total Turing machine
(that we all, for brevity, a total computable online learner), that makes at most d mistakes,
has effective Littlestone dimension at most d.

� We show that the converse does not hold. We construct a class of effective Littlestone dimension
2 that does not admit even a partial computable online learner (“partial” means that the Turing
machine, computing it, might not halt on some non-realizable samples) with a finite number
of mistakes.

� On the positive side, we show that effective Littlestone dimension is equivalent to a computable
online learning “with an upper bound”. In this setting, the learner is given in an advance an
upper bound on numbers it will see in the game.

� We also show that every class of finite effective Littlestone dimension consists of computable
functions. As a consequence, every class of effective Littlestone dimension 1 admits a total
computable online learner with 1 mistake.

Similar failure of the combinatorial characterization of computable learning was recently observed
by Gourdeau, Tosca, and Urner [5] for computable robust PAC learning.

2 Preliminaries

By hypothesis classes we mean sets of functions from N to {0, 1}. By samples we mean finite
sequences of pairs from N × {0, 1}. A sample S = (x1, y1) . . . (xk, yk) is consistent with a function
f : N → {0, 1} if f(x1) = y1, . . . , f(xk) = yk. A sample S = (x1, y1) . . . (xk, yk) is realizable by a
hypothesis class H (or H-realizable, for brevity) if there is a function in H with which S is consistent.

A learner is a partial function L : (N×{0, 1})∗×N → {0, 1} (thus, the first input to L is a sample
and the second input is a natural number). We say that a learner L is a learner for a hypothesis
class H if for every H-realizable sample S the value L(S, x) is defined for every x ∈ N. A total

2



learner is a learner which is defined everywhere. Sometimes we write “partial learner” to stress that
a statement holds not only for total learners.

A learner L is computable if there exists a Turing machine that outputs L(S, x) on (S, x) for
which L is defined, and does not halt on (S, x) for which L is not defined.

For a given sample S, the learner induces a (possibly, partial) function LS : N → {0, 1} by setting
LS(x) = L(S, x), to which we refer as the hypothesis of L after the sample S.

Let L be a learner and S = (x1, y1) . . . (xk, yk) be a sample. The number of mistakes of L on
S is the number of i ∈ {1, . . . , k} such that L((x1, y1) . . . (xi−1, yi−1), xi) ̸= yi. One can interpret
this quantity as follows. Imagine that L receives pairs of S one by one. Each pair (xi, yi) is given
like this: first L receives xi and is asked to predict yi, using its knowledge of the preceding pairs in
the sample. After L makes a prediction, the true value of yi is revealed, causing a mistake if the
prediction differs from yi.

A learner L for a hypothesis class H is called an online learner for H with at most d mistakes if
L makes at most d mistakes on any H-realizable sample.

Lemma 1. Let H be a hypothesis class and L be an online learner for H with at most d mistakes,
for some d ∈ N. Then every function f ∈ H coincides with LS for some sample S, consistent with
f .

Proof. Indeed, if there is no such sample, we can construct a sample, consistent with f , on which L
makes more than d mistakes. Namely, we start with the hypothesis of L after the empty sample. It
disagrees with f on some x1 ∈ N which we put to the sample as (x1, f(x1)), causing the first mistake.
The hypothesis of L after (x1, f(x1)) disagrees with f on some x2, and we add this (x2, f(x2)) to
the sample, forcing the second mistake, and so on. In this way, we can force arbitrarily many
mistakes.

Corollary 2. Let H be a hypothesis class that for some d ∈ N, has a computable online learner L,
making at most d mistakes on H. Then all functions in H are computable.

Proof. By Lemma 1, every function f ∈ H coincides with LS for some sample H-realizable sample
S. Since L is a learner for H and is computable, the function LS is computable.

By a Littlestone tree of depth d we mean a complete rooted binary tree of depth d where: (a)
edges are directed from parents to children, with each edge labeled by 0 or 1 such that every non-
leaf node has one out-going 0-edge and one out-going 1-edge; and (b) non-leaf nodes are labeled by
natural numbers. Every edge in such a tree can be assigned a pair (x, y) ∈ N×{0, 1} where x is the
natural number, labelling node this edge starts at, and y is the bit, labelling this edge. Thus, every
directed path in this tree can be assigned a sample, obtained by concatenating pairs, assigned to its
edges. Now, for a vertex v of a Littlestone tree T , and for a hypothesis class H, we say that v is
H-realizable if the sample, written on the path from the root of T to v, is H-realizable.

The Littlestone dimension of a class H, denoted by Ldim(H), is the minimal d ≥ 0 such that in
every (d + 1)-depth Littlestone tree T there exists a leaf which is not H-realizable. The effective
Littlestone dimension of a class H, denoted by effLdim(H), is the minimal d ≥ 0 for which there
exists a total Turing machine that, given as input a Littlestone tree of depth d + 1, outputs some
leaf of this tree which is not H-realizable.

Proposition 3 ([9]). For any class H, the minimal d ≥ 0 for which there exists an online learner
for H with at most d mistakes is equal to Ldim(H).

If H is a hypothesis class, then for x ∈ N and b ∈ {0, 1}, by Hx
b we denote the class {f ∈ H |

f(x) = b}.

3



Proposition 4 ([9]). For any hypothesis class H of finite positive Littlestone dimension, and for
every x ∈ N, either Hx

0 or Hx
1 have smaller Littlestone dimension than H.

For a sample S, a cylinder, induced by S, is the set of functions f : N → {0, 1}, consistent with
S. Unions of cylinders induce on {0, 1}N a topology, homeomorphic to the Cantor space. Cylinders
are clopen in this topology. We use a well-known fact that the Cantor space is compact.

A subset of {0, 1}N is effectively open if it is a union of an enumerable set of cylinders. A subset
of {0, 1}N is effectively closed if the complement to it is effectively open.

Proposition 5. Let X ⊆ {0, 1}N be effectively open. Then the set of cylinders C that are subsets
of X is enumerable.

Proof. There exists a computable enumeration {Cn}∞n=1 of cylinders such that X =
⋃∞

n=1 Cn. We

enumerate all cylinders C for which there exists N ∈ N such that C ⊆
⋃N

n=1 Cn. By compactness,
since every cylinder is closed, in this way we will enumerate all cylinders C such that C ⊆

⋃∞
n=1 Cn.

3 Effective threshold dimension

Let t ∈ N and (x1, . . . , xt) ∈ Nt be a sequence of t natural numbers. For i = 1, . . . , t, the ith
threshold on (x1, . . . , xt) is a sample:

(x1, 0) . . . (xi−1, 0)(xi, 1) . . . (xt, 1).

. The threshold dimension of a hypothesis class H, denoted by Tdim(H), is the largest natural
number t for which there exists a sequence (x1, . . . , xt) ∈ Nt such that for all i = 1, . . . , t, the ith
threshold on (x1, . . . , xt) is H-realizable.

Shelah [10] have shown that a class has finite Lilttlestone dimension if and only it has finite
threshold dimension. Hodges [7] and Alon et al. [2] have shown the following quantitive version of
the Shelah’s result.

Theorem 6 ([7, 2]). For any hypothesis class H, we have:

1. ⌊log2 Ldim(H)⌋ ≤ Tdim(H);

2. ⌊log2 Tdim(H)⌋ ≤ Ldim(H).

We demonstrate that a hypothesis class H has finite effective Littlestone dimension if and only if
it has finite effective threshold dimension. Here, the effective threshold dimension of H, denoted by
effTdim(H) is the minimal t ≥ 0 for which there exists a total Turing machine w which, having on
input a sequence (x1, . . . , xt+1) ∈ Nt+1, outputs some i ∈ {1, . . . , t+ 1} such that the ith threshold
on (x1, . . . , xt+1) is not H-realizable.

In fact, we show that any upper bound on the Littlestone dimension by the threshold dimension,
and vice versa, extends to the effective versions of these dimensions. More precisely, the following
theorem holds.

Theorem 7. � (a) for d ∈ N, let td denote the maximal possible threshold dimension of a
hypothesis class with Littlestone dimension at most d; then any hypothesis class H with effective
Littlestone dimension d has effective threshold dimension at most td.

4



� (b) for t ∈ N, let dt denote the maximal possible Littlestone dimension of a hypothesis class with
threshold dimension at most t; then any hypothesis class H with effective threshold dimension
t has effective threshold dimension at most dt

Proof. Let us show (a). Let H be a class of effective Littlestone dimension d. We show that its
effective threshold Littlestone dimension is at most td. We have a total turing machine A that,
given a Littlestone tree T of depth d+ 1, outputs a leaf of T which is not H-realizable. We convert
A into a Turing machine w that, given a sequence x = (x1, . . . , xtd+1) ∈ Ntd+1, outputs some
i ∈ {1, . . . , td + 1} such that the ith threshold on x is not H-realizable.

The machine w starts by calculating a list T1, . . . , Tm of all Littlestone trees of depth d + 1
where node labels are taken from the set {x1, . . . , xtd+1}. Then the machine runs A on all of these
Littlestone trees. Each time A outputs a leaf in some of these trees, it writes down the sample,
written on the path to this leaf. Let S1, . . . , Sm be the resulting list of samples. Observe that, by
definition of A, all these samples are not H-realizable. The machine proceeds by constructing a set
Ĥ of functions g : {x1, . . . , xtd+1} → {0, 1} such that g is not consistent with Sℓ for all ℓ = 1, . . . ,m.
That set includes all restrictions of f ∈ H to the set {x1, . . . , xtd+1}. Finally, the machine goes

through all i = 1, . . . , td + 1, checking, whether the ith threshold on (x1, . . . , xtd+1) is Ĥ-realizable,

brute-forcing all functions in Ĥ. Whenever it finds a not Ĥ-realizable threshold, which is also
automatically not H-realizable, the machine outputs the corresponding i.

Such threshold exists because the threshold dimension of Ĥ, as of an hypothesis class over the
domain {x1, . . . , xtd}, is at most td. Indeed, its Littlestone dimension is at most d because in every
Littlestone tree Tℓ over the domain {x1, . . . , xtd}, there exists a leaf with the sample Sℓ which is not

Ĥ-realizable. And by definition, the threshold dimension of a class with Littlestone dimension at
most d cannot exceed td.

The statement (b) is proved similarly. Now we have to convert a Turing machine w which, given
a sequence x = (x1, . . . , xt+1) ∈ Nt+1, outputs a threshold on x which is not H-realizable, into a
Turing machine A that, given a depth-(dt + 1) Littlestone tree T , outputs a leaf in T which is not
H-realizable. We let DT be the set of all natural numbers, appearing in T . We go through all
(t + 1)-length sequences, consisting of numbers from DT , run w on them and construct the list of

all threshold that it outputs (that are all not H-realizable). We then construct a set Ĥ of functions
g : DT → {0, 1} that are inconsistent with all these thresholds, and this set includes all restrictions
of function from H to DT . We notice that, by construction, the threshold dimension of H is at most
t, which means that its Littlestone dimension is at most dt. We use this to find in T , which is a tree
of depth dt + 1, a leaf which is not Ĥ-realizable. This leaf is automatically not H-realizable.

Corollary 8. For any hypothesis class H, we have:

1. ⌊log2 effLdim(H)⌋ ≤ effTdim(H);

2. ⌊log2 effTdim(H)⌋ ≤ effLdim(H).

4 Effective Littlestone dimension vs. computable online learn-
ing

Proposition 9. For any hypothesis class H and for any d, we have the following. If H admits
a total computable online learner which makes at most d mistakes, then the effective Littlestone
dimension of H is at most d.

5



Proof. Let L be a total computable online learner for H with at most d mistakes. Given a (d+ 1)-
depth Littlestone tree T , we find a leaf of it on which L makes d + 1 mistakes. Namely, we give
L the number from the root, wait for its prediction (since L is total, we will receive it), go to the
child which contradicts this prediction, give the number from this child, and so on. The sample on
the path to this leaf cannot by H-realizable because L makes at most d mistakes on H-realizable
samples.

Main result of this section is that the converse of this proposition is false already for d = 2
(although, as we will see later, it is true for d = 1).

Theorem 10. There exists a class H of effective Littlestone dimension 2 which, for all d, does not
have a partial computable online learner with at most d mistakes.

Proof. In our construction, to make sure that H has effective Littlestone dimension at most 2, we
establish two things: (a) H has ordinary Littlestone dimension at most 2, (b) H is effectively closed.

Why do (a) and (b) imply that H has effective Littlestone dimension at most 2? We have to
provide an algorithm that, given a depth-3 Littlestone tree T , gives a leaf ℓ of T which is not H-
realizable. Such leaf ℓ exists because, by (a), the ordinary Littlestone dimension of H is at most 2.
Out task is to find it. For a leaf ℓ, let Sℓ be the sample, written on the path to ℓ. Let Cℓ be the
cylinder, induced by Sℓ. A leaf ℓ is not H-realizable if and only if Cℓ is a subset of the complement
to H. Since, H is effectively closed by (b), the complement to it is effectively open. Hence, by
Proposition 5, the set of cylinders that are subsets of the complement to H is enumerable. We start
enumerating them until Cℓ for some leaf ℓ of T appears in this enumeration.

In our construction, we ensure effective closeness of H by defining it via an enumerable set
of “local restriction”. Each local restriction is of the form “at this (finite) set of positions, you
cannot have this combination of values”. Thus, each local restriction is, formally, a complement to
a cylinder. The class H will consist of functions, satisfying all these restrictions. In other words, H
will be an intersection of an enumerable set of complements to the cylinders. Hence, the complement
to H will be a union of the corresponding enumerable set of cylinders, as required in the definition
of an effectively closed set.

Fix a computable enumeration L1, L2, L3, . . . of all partial computable learners. We say that a
class H “fools” a learner Li if either

� (a) there is an H-realizable sample S and x ∈ N such that Li(S, x) does not halt;

or

� (b) there is a function f ∈ H and an infinite sequence of natural numbers {xn ∈ N}∞n=1 such
that, denoting Sn = (x1, f(x1)) . . . (xn, f(xn)), we have that Li(Sn−1, xn) is defined but differs
from f(xn) for every n ≥ 1. In other words, Li incorrectly predicts f every time on the
sequence (x1, x2, x3, . . .).

If H fools Li, then there is no d ∈ N for which Li is an online learner for H with at most d mistakes.
Indeed, in the case of (a), Li is not a learner for H, and in the case of (b), for every n there exists
an H-realizable sample Sn on which Li makes n mistakes. We will construct H that fools every Li

but has Littlestone dimension 2 and is effectively closed.

Let us start with a simpler task – for every i, we construct an effectively closed class Ĥi that fools
Li (but maybe not other partial computable learners). The class Ĥi will have at most 2 functions.
The construction works in (potentially infinitely many) iteration.

In the first iteration, we give 1 to Li for prediction, on the empty sample, that is, we start
computing Li(empty, 1). In parallel, we start listing restrictions of the form “f(1) = f(k)” for

6



k = 2, 3, and so on (forbidding different values at 1 and k). If Li never halts, we will list all such

restrictions. As the result, Ĥi will consist of two constant functions. In this case, Li is fooled by
not halting for some Ĥi-realizable sample, namely, for the empty one.

Assume now that Li(empty, 1) halts, outputting p1 ∈ {0, 1}. Up to this moment, we have listed
restrictions “f(1) = f(k)” for k up to some k1 ∈ N. We now add a restriction, forbidding f(1) to
be p1. In other words, we set f(1) = b1 = ¬p1. With this, the first iteration ends. So far, we have
achieved two things. First, functions, satisfying our current restrictions, are exactly functions with
f(1) = . . . = f(k1) = b1. Second, Li(empty, 1) halts but its output is different from b1.

More generally, in our construction, after n iterations, for some k1, . . . , kn ≥ 1 and for some
b1, . . . , bn ∈ {0, 1}, the following requirements will be fulfilled:

� Setting x1 = 1, x2 = x1 + k1, . . . , xn = xn−1 + kn−1 and Sm = (x1, b1), . . . , (xm, bm) for
m = 0, . . . , n, we have that Li(Sm−1, xm) halts but with the output, different from bm, for
every m = 1, . . . , n.

� functions, satisfying our current list of restrictions, are precisely functions f , satisfying:

f(x1) = . . . = f(x1 + k1 − 1) = b1,

f(x2) = . . . = f(x2 + k2 − 1) = b2,

...

f(xn) = . . . = f(xn + kn − 1) = bn.

(1)

Assuming these conditions are fulfilled after n iterations, we show how to fulfil them after n + 1
iterations. We start computing Li(Sn, xn+1) for xn+1 = xn + kn. In parallel, we start listing
restrictions of the form “f(xn+1) = f(xn+1 + k − 1)” for k ≥ 2. If Li(Sn, xn+1) never halts, we will

list all such restrictions. As the result, the class Ĥi will consist of two functions that are defined
by (1) on numbers less than xn+1 and are constant on {xn+1, xn+1 + 1, xn+1 + 2, . . .}. Both these
function are consistent with Sn as Sn is a part of (1); this fools Li as it does not halt on (Sn, xn+1)

while Sn is Ĥi-realizable.
Assume now that Li(Sn, xn+1) halts, outputting pn+1 ∈ {0, 1}. Up to this point, we have

listed “f(xn+1) = f(xn+1 + k − 1)” restrictions for k up to some kn+1. We add a restriction
“f(xn+1) = bn+1 = ¬pn+1” and end with this the (n + 1)st iteration. This adds a line f(xn+1) =
. . . = f(xn+1 + kn+1 − 1) = bn+1 to (1), as required. Moreover, by making sure that Li(Sn, xn+1)
halts but outputs ¬bn+1, we extend the requirement Li(Sm−1, xm) ̸= bm to m = n+ 1.

As is already observed, if some iteration never ends, Li will be fooled by not halting on some
input with an Ĥi-realizable sample. Now, imagine that every iteration ends after finitely many steps.
Then (1) will be true for all n, leaving in Ĥi a single function f , which is equal to b1 on [x1, x2), to

b2 on [x2, x3), and so on. This f ∈ Ĥi, together with the sequence (x1, x2, x3, . . .), will fool Li.

We now give a single effectively closed class H of Littlestone dimension at most 2 that fools every
Li. We partition natural numbers into infinitely many infinite disjoint blocks in some computable
way, assigning each Li one of the blocks. We will have two kind of restrictions. First, for every pair
of numbers from different blocks, we will forbid both of them having value 1, forcing every function
in H to have value 1 in at most one of the blocks. Restrictions of the second type will involve only
numbers from the same block. Thus, for every i, the will be the “ith block restrictions”, and their
union over i = 1, 2, 3, ... will be the set of second-type restrictions.

For every i, we list the ith block restrictions in a way that fools Li as in the construction of the
class Ĥi, but using the set of numbers of the ith block instead of {1, 2, 3, . . . , }. Additionally, we

7



do it with one modification. As a result of this modification, the class Ĥi will potentially have 3
functions. Namely, the all-0 function will be added to the class Ĥi if it was not there already.

In more detail, every restriction that we have for Li, saying “you cannot have these values in
these positions”, is turned into infinitely many restrictions, where for every x from the i-th block,
we say “you cannot have these values in these positions and have 1 at position x simultaneously”.
Any function, satisfying old restrictions, satisfies all these new restrictions because new restrictions
are weaker. However, no new function, apart from the all-0 function, can be added to Ĥi in this
way. Indeed, any function f with at least one value 1, violating some old restriction, will violate a
new restriction where as x we take some number on which f is equal to 1. As a result, there will be
at most 2 functions in H that have value 1 on some number from the ith block.

We “almost” established that H fools every Li. Namely, there will be a function fi, defined
on the ith block and satisfying the ith block restrictions, that fools Li. That is, either there will
be an input with a sample, consistent with this function, on which Li does not halt, or there will
be an infinite sequence of numbers from the ith block on which Li predicts values of fi incorrectly
every time. It remains to argue that fi can be extended to a function fi : N → {0, 1} satisfying
other restrictions, defining H – first-type restrictions and restrictions for other blocks. Namely, set
fi(x) = 0 for all x outside the ith block. This works because all these other restrictions involve at
least one label 1 for a number outside the ith block (this is why we had to modify the construction

of Ĥi, including at least one label 1 to every restriction!).
It remains to show that the Littlestone dimension of H is at most 2. Due to the first-type

restrictions, no function in H can have value 1 in two distinct blocks. Thus, H can be presented as

H = {all-0 function} ∪H1 ∪H2 ∪H3 . . . ,

where Hi iss the set of functions from H that have value 1 on some number from the ith block. As
we have noted, the size of every Hi is at most 2. Hence, there is an online learner for H with at
most 2 mistakes, implying by Proposition 3 that Ldim(H) ≤ 2. This learner first predicts 0 on every
number. If it is wrong, it is because there is a positive label in some block. This leaves the algorithm
with at most 2 possible functions left. The learner first predicts according to one of them, and, in
case of the second mistake, according to the second one.

5 Equivalence in the bounded regime

On the positive side, we consider a modification of online learning where the learner initially gets
an upper bound N on the numbers it will receive for prediction. It can be arbitrarily large, but
the bound on the number of mistakes d should not depend on N . We call it online learning in the
bounded regime. We show that effective Littlestone dimension characterizes computable learnability
in this setting. As a corollary, we get the separation between computable online learning in the
bounded and the unbounded regime. For some class, online learning with bounded number mistakes
is possible when the learner gets an arbitrary bound on the numbers, but not possible without a
bound.

To be precise, a learner with an upper bound is a, possibly partial, function L : N×(N×{0, 1})∗×
N → {0, 1} (compared to normal learners, it has one more input, an upper bound). AS before, we
say that L is a learner for a hypothesis class H if L(N,S, x) is defined for every N, x ∈ N and for
every H-realizable sample S.

Let L be a learner with an upper bound for H. We say that L online learns H in the
bounded regime with at most d mistakes if, for any N ∈ N and any H-realizable sample S =

8



(x1, y1), . . . , (xk, yk) with the property that x1, . . . , xk ≤ N , there are at most d numbers i ∈
{1, . . . , k} such that L(N, (x1, y1), . . . , (xi−1, yi−1), xi) ̸= yi.

Proposition 11. A hypothesis class H has effective Littlestone dimension at most d if and only if
there is a total computable learner with an upper bound which online learns H in the bounded regime
with at most d mistakes.

Proof. Assume that L is a computable a learner with an upper bound which online learns H in the
bounded regime with at most d mistakes. We show that effLdim(H) ≤ d. Let T be a Littlestone
tree of depth d + 1 where we have to output a leaf which is not H-realizable. We take as N the
largest number, appearing in T , and run the same procedure as in the proof of Proposition 9, with
L having N as the additional input.

Next, assume that H has effective Littlestone dimension at most d. Hence, there is an algorithm
A that, given a (d + 1)-depth Littlestone tree T , outputs a leaf which is not H-realizable. We
construct a learner L that, given an upper bound N , goes through all Littlestone trees of depth
d + 1 with node labels at most N , computes all samples that are indicated by A in these trees,
and finds the set HN of all functions on the first N natural numbers that are inconsistent with all
these samples. The set HN includes all functions that can be continued to a function in H. On the
other hand, the Littlestone dimension HN is at most d as “witnessed” by A. The class HN is over
a finite domain, and we have a complete description of it, so we find an online learner with at most
d mistakes for it by the brute-force.

One could wonder whether the similar equivalence could be proven for finite classes of functions
but exchanging ”computable” for some of form of time-bounded computability, such as ’polynomial-
time computable’. We leave this as an interesting direction for further research.

6 Effective Littlestone dimension and computability

Theorem 12. Let H be a hypothesis class with finite effective Littlestone dimension. Then all
functions in H are computable.

Proof. We establish the theorem by induction on effLdim(H). When effLdim(H) = 0, we have an
algorithm that, given a depth-1 Littlestone tree T , outputs a leaf of T which is not H-realizable. In
other words, for a given number x ∈ N, written in the root of T , it indicates b ∈ {0, 1} such that
f(x) ̸= b for all f ∈ H. By outputting ¬b on x we obtain a program for the unique function f ∈ H.

For the induction step, we need the following lemma, which is an analog of the Proposition 4 for
effective Littlestone dimension.

Lemma 13. For any class H of finite positive effective Littlestone dimension, and for any x ∈ N,
either Hx

0 or Hx
1 have smaller effective Littlestone dimension that H.

Proof. Let d = effLdim(H) > 0. There exists an algorithm A that, given a (d+1)-depth Littlestone
tree, outputs a leaf of it which is not H-realizable.

We now describe two algorithms, A0 andA1, and show that eitherA0 establishes that effLdim(Hx
0 ) ≤

d − 1, or A1 establishes that effLdim(Hx
1 ) ≤ d − 1. Namely, both algorithms receive on input a d-

depth Littlestone tree (here we need a condition d > 0 so that the notion of “d-depth trees” makes
sense). The algorithm A0 is supposed to output a leaf which is not Hx

0 -realizable. Likewise, A1 is
supposed to output a leaf which is not H1

x-realizable.
The algorithm A0 works as follows. Let its input be a depth-d Littlestone tree T0. The algorithm

goes over all depth-d Littlestone trees T1, and for each of them, does the following. It constructs

9



a tree T = (x, T0, T1), where the root is labeled by x, the 0-subtree coincides with T0, and the
1-substree coincides with T1. The algorithm gives this T to A. If A outputs a leaf in the 0-subtree
of T , that is, inside T0, the algorithm A0 outputs this leaf as its answer, and halts. Otherwise, A0

proceeds to the next T1.
If A0 ever halts on T0, then the leaf ℓ of T0 that it outputs is not Hx

0 -realizable. Indeed, consider
the sample S0

ℓ , written on the path from the root of T0 to ℓ. Assume for contradiction that this
sample is Hx

0 -realizable. Then the sample (x, 0)S0
ℓ is H-realizable. But ℓ is the output of A on T ,

and (x, 0)S0
ℓ is written on the path from the root of T to ℓ, a contradiction.

The problem with A0 is that it might not halt on some T0. This happens when, for all T1, the
algorithm A on input T = (x, T0, T1) outputs a leaf in T1. We now define the algorithm A1. It
receives a depth-d Littlestone tree T1 on input (where it supposed to indicate a not Hx

1 -realizable
leaf), and runs A on all trees of the form (x, T0, T1), waiting until A indicates a leaf in the 1-subtree.
By the same argument, whenever A1 halts, its output is correct.

The only case when both algorithms fail is when there exist depth-d Littlestone trees T ′
0, T

′
1 such

that A0 does not halt on T ′
0 and A1 does not halt on T ′

1. This means that A goes to the 1-subtree in
all trees of the form (x, T ′

0, T1), and goes to the 0-subtree in all trees of the form (x, T0, T
′
1). However,

this means that A does not output anything in the tree (x, T ′
0, T

′
1), a contradiction.

Let us now finish the induction step. Assume we have a class H of effective Littlestone dimension
d > 0, and for all smaller value of effective Littlestone dimension, the theorem is already proved.

Without loss of generality, we may assume that H is effectively closed. Indeed, take the algorithm
A that, given a (d+ 1)-depth Littlestone tree T , outputs a leaf of H which is not H-realizable. Say
that a function f : N → {0, 1} agrees with A if there is no depth-(d+1) Littlestone tree T on which
A outputs a leaf which is consistent with f . All functions in H agree with A. Consider the class
Ĥ ⊇ H of all functions that agree with A. The effective Littlestone dimension of Ĥ is at most d
as established by the algrotihm A. In turn, Ĥ is effectively closed. Indeed, the complement to it
consists of all function that are consistent with at least one leaf that A outputs on depth-(d + 1)

Littlestone trees. To enumerate the set of cylinders whose union is the complement to Ĥ, we go
though all depth-(d + 1) Littlestone trees T , compute the leaf ℓ = A(T ), and add the cylinder Cℓ,
induced by this leaf, to the enumeration.

From now on, we assume that the class H is effectively closed. By Lemma 13, for every x ∈
N, either effLdim(Hx

0 ) < d or effLdim(Hx
1 ) < d. Assume first that for some x ∈ N, we have

effLdim(Hx
0 ) < d or effLdim(Hx

1 ) < d. Then by the induction hypothesis, both Hx
0 and Hx

1 consist
of computable functions. It remains to notice that H = Hx

0 ∪Hx
1 .

Assume now that for every x ∈ N, either effLdim(Hx
0 ) = d or effLdim(Hx

1 ) = d. Consider
the function f : N → {0, 1}, defined by effLdim(Hx

f(x)) = d for every x. By Lemma 13, we have

effLdim(Hx
¬f(x)) < d for every x ∈ N. Hence, any function g ∈ H, different from f , is computable,

as it belongs to Hx
¬f(x) for some x ∈ N. It remains to show that if f ∈ H, then it is computable.

First, consider the case when there exists a sample S which is consistent with f but not with
any other g ∈ H. We describe an algorithm that, given x ∈ N, computes f(x). Observe that the
sample S(x,¬f(x)) is not H-realizable because it is inconsistent with f and S is inconsistent with
all the other functions in H. At the same time, S(x, f(x)) is H-realizable because it is consistent
with f ∈ H. Since H is effectively closed, the complement to it is effectively open. By Proposition
5, the set of cylinders that are subsets of the complement to H, is enumerable. Hence, the set of
samples that are not H-realizable, is enumerable. We enumerate this set until a sample of the form
S(x, y) for some y ∈ {0, 1} appears. Since S(x,¬f(x)) is not H-realizable and S(x, f(x)) is, we have
that y = ¬f(x). We output ¬y = f(x).

Assume now that for every sample S, consistent with f , there exists g ∈ H, different from f ,

10



which is also consistent with S. We use an online learning algorithm with “consistent oracle” [8, 3]. A
consistent oracle for a class H is a mapping that, given an H-realizable sample S, outputs a function
fS ∈ H, consistent with this sample. More precisely, it gives an oracle access to fS , meaning that
given S and x ∈ N, it allows to evaluate fS(x). Kozachinskiy and Steifer[8] constructed an algorithm
that, for any class H of Littlestone dimension d, given only access to a consistent oracle for H, online
learns it with at most O(256d) mistakes. This algorithm, to compute L(S, x), the prediction on x
after the sample S, uses consistent oracle only for S and its subsamples, making sure that it never
applied to a non-H-realizable sample.

We get back to the class H in question, and we take any consistent oracle H that never uses
function f . Such oracle exists because for any sample, consistent with f , there exists another function
in H, consistent with this sample. We know that all function in H, apart from H, are computable.
Hence, this consistent oracle uses only computable functions.

We consider the online learner L of Kozachinskiy and Steifer [8], equipped with this consistent
oracle. By Lemma 1, there exists a sample S, consistent with f , such that LS coincides with f , that
is, L(S, x) = f(x) for all x ∈ N. We show that LS is computable. Indeed, in its computation, the
consistency oracle is queried only for finitely many samples. It is enough to hardwire programs for
the output functions of the consistency oracle on these samples.

Corollary 14. Let H be a class of effective Littlestone dimension 1. Then it has a total computable
online learner with at most 1 mistake.

Proof. Assume first thatH is finite. By Theorem 12, all finitely many functions ofH are computable.
In this case, we can realize the standard optimal algorithm of Littletone [9] by a total Turing machine.
In case when Ldim(H) = 1, it works like this: given x ∈ N, it takes b ∈ {0, 1} such that Ldim(Hx

b ) = 0
(existing by Proposition 4)and predicts ¬b so that when it is wrong, we are in Hx

b where there is
exactly one function. To realize this algorithm by a total Turing machine, we need to be able to
decide, whether a sample is realizable, and whether it is realizable by exactly one function from H.
We can achieve this by evaluating all functions from H on the numbers from the sample.

From now on we assume that H is infinite. We may also assume that H is effectively closed, by
the same argument as in the proof of Theorem 12.

First, observe that there is no x ∈ N such that Ldim(Hx
0 ) = Ldim(Hx

1 ) = 0 because otherwise
H = Hx

0 ∪Hx
1 has size at most 2. Therefore, we can define a function f : N → {0, 1} by setting f(x)

such that Ldim(Hx
f(x)) = 1. We claim that this function belongs to H. Indeed, if not, since H is

closed, some sample
S = (x1, f(x1)) . . . (xk, f(xk))

is consistent with f but not H-realizable. But then H = Hx1

¬f(x1)
∪ . . . ∪Hxk

¬f(xk)
. By the definition

of f , we have Ldim(Hxi

¬f(xi)
) = 0 for every i = 1, . . . , k. Hence, in H there are at most k function,

so it cannot be infinite.
Therefore, f ∈ H and hence is computable by Theorem 12. We give a total computable online

learner L for H with at most 1 mistake, working as follows. Given a sample S and x ∈ N, we define
L(S, x) = f(x) if S is consistent with f (this can be checked computably since f is computable). If S
is not consistent with f , we start enumerating samples that are not H-realizable, using Proposition
5 and the fact that H is effectively closed. Whenever a sample of the form S(x, y) for some y ∈ {0, 1}
appears, we output L(S, x) = ¬y.

This learner makes at most 1 mistake on H-realizable sample. Namely, it can make a mistake
only when the first pair, inconsistent with f , appears. In turn, this learner is total. Indeed, whenever

11



S is not consistent with f , there is a pair of the form (x,¬f(x)) in S for some x ∈ N. It is impossible
for both S(x, 0) and S(x, 1) to be H-realizable because Hx

¬f(x) has at most 1 function.

References

[1] Agarwal, S., Ananthakrishnan, N., Ben-David, S., Lechner, T., and Urner, R. On
learnability wih computable learners. In Algorithmic Learning Theory (2020), PMLR, pp. 48–
60.

[2] Alon, N., Bun, M., Livni, R., Malliaris, M., and Moran, S. Private and online learn-
ability are equivalent. J. ACM 69, 4 (2022).

[3] Assos, A., Attias, I., Dagan, Y., Daskalakis, C., and Fishelson, M. K. Online
learning and solving infinite games with an erm oracle. In The Thirty Sixth Annual Conference
on Learning Theory (2023), PMLR, pp. 274–324.

[4] Delle Rose, V., Kozachinskiy, A., Rojas, C., and Steifer, T. Find a witness or shatter:
the landscape of computable pac learning. In The Thirty Sixth Annual Conference on Learning
Theory (2023), PMLR, pp. 511–524.

[5] Gourdeau, P., Tosca, L., and Urner, R. On the computability of robust pac learning. In
The Thirty Seventh Annual Conference on Learning Theory (2024), PMLR, pp. 2092–2121.

[6] Hasrati, N., and Ben-David, S. On computable online learning. In International Conference
on Algorithmic Learning Theory (2023), PMLR, pp. 707–725.

[7] Hodges, W. A shorter model theory. Cambridge university press, 1997.

[8] Kozachinskiy, A., and Steifer, T. Simple online learning with consistent oracle. In The
Thirty Seventh Annual Conference on Learning Theory (2024), PMLR, pp. 3241–3256.

[9] Littlestone, N. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning 2 (1988), 285–318.

[10] Shelah, S. Classification theory and the number of nonisomorphic models. Journal of Symbolic
Logic 47, 3 (1982), 694–696.

[11] Sterkenburg, T. F. On characterizations of learnability with computable learners. In Con-
ference on Learning Theory (2022), PMLR, pp. 3365–3379.

12


	Introduction
	Preliminaries
	Effective threshold dimension
	Effective Littlestone dimension vs. computable online learning
	Equivalence in the bounded regime
	Effective Littlestone dimension and computability

